BW10-10x0-T-T Application Notes

7 Pin Open Lens cap package with TEC

This application note describes handling precautions and power up procedure for 10x0nm sweep sources.

Table of Contents

1.	ESD HANDLING AND PRECAUTIONS	2
	TRANSIENT PULSE SUPPRESSION AND OTHER PRECAUTIONS	
3.	OPERATION CONDITIONS.	3
4.	RECOMMENDED EQUIPMENT AND CONNECTION TO THE DEVICE	3
	BEST PERFORMANCE RECOMMENDATIONS:	
	B. TUNING THE LASER WAVELENGTH:	
	. THE TEC AND THERMISTOR:	
	5. FIRST TIME SETUP SEQUENCE:	
5.	OPTICAL SPECTRUM AS A FUNCTION OF VOLTAGE TUNING	6
6.	TEC PARAMETERS AND RESPONSE	7
7	THERMISTOR PERFORMANCE TABLE	8

1. ESD handling and precautions

Electrostatic discharge (ESD) can damage the devices permanently and the device does not any ESD protection circuits. Therefore, it is very important to ensure proper ESD protection. Place the packed device on an ESD protected workstation i.e. before removing the ESD protection bag. You must wear a wrist strap and appropriate smocks made from dissipative material. Note that the smocks must be closed to ensure proper ESD protection. A good side for further ESD information is https://www.esda.org/about-esd/

CAUTION: Device is very sensitive to electrostatic discharge.

2. Transient pulse suppression and other precautions

Transient pulses can damage the devices in a system environment. Please ensure proper voltage and current filtering and especially transient pulse suppression of the signals fed into the devices when developing driving circuits.

The laser and tuning circuits should both be driven with floating sources. Do not use sources with earth ground If sources with earth ground cannot be avoided, please ensure that only one of the sources has earth ground or else that the earth ground of both devices is connected to pin 6. Failure to do so will cause a ground loop that may result in possible catastrophic damage to the device. In a laboratory environment we do recommend precise programmable power supply's as for example Keithley 2200 series for wavelength tuning and Keithley 2400 series as laser current sources.

3. Operation conditions.

Exceeding the operating conditions can result in a permanent damage of the device. Please do not exceed the maximum operation conditions given in the datasheet of the device. Especially do not exceed the maximum tuning voltage or the maximum operating current which can result in a permeant damage of the device.

4. Recommended equipment and connection to the device

Please ensure the first-time power on sequence in section 4.5 when you power up the device.

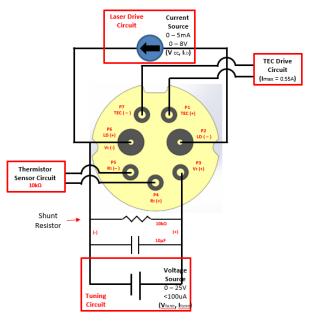


Figure 1: Electrical connection of the sweeping devices.

In Figure 1 the connection of the device is illustrated. In a laboratory environment we do recommend the equipment from the following manufacturers:

4.1. **Best Performance Recommendations:**

- Place the TO on a TO-Can mount or good thermal heat sink
- Clamp the TO down for best thermal contact
- The mount/heat sink fixed at or near typical room temperature

4.2. **Driving the laser:**

- **IMPORTANT:** The laser and tuning circuits should both be driven with floating sources.
- DO NOT USE SOURCES WITH EARTH GROUND if possible!
- If sources with earth ground cannot be avoided, please ensure that only one of the sources has earth ground or else that the earth ground of both devices is connected to pin 6. Failure to do so will cause a ground loop that may result in possible catastrophic damage to the device.
- Should be a precision current source for best stability
- (ideally with <10 µA noise)
- NOTE: Typical commercial laser driver current sources Do Not work well with VCSELs. (They are typically designed for Edge Emitters and the VCSEL differential resistance often trips the driver's protection circuitry.
- We recommend using a standard current source that is NOT DESIGNED FOR LASERS.

4.3. **Tuning the Laser wavelength:**

- As noted on previous page and shown on diagram below, the tuning bias voltage should be applied between the tuning pin (P3 / Vt+) and the laser drive pin (P6 / LD+).
- The voltage source should not exceed 25V (unless otherwise noted in the test sheet)
- The compliance current should not exceed 100 μA
- Notice that the wavelength tuning is approximately quadratic with voltage, so we recommend a 10 μF capacitor and 10 $k\Omega$ resistor in parallel with the tuning voltage source to reduce noise and guard against any transients. (see Figure 1)

4.4. The TEC and Thermistor:

- The TEC has an Imax of 0.55A
- P1 and P7 can connect to a standard TEC driving current
- P4 and P5 is connected to the thermistor which is a 10 k Ω sensor

4.5. First Time Setup Sequence:

Please follow the steps in order, do not proceed to a next step without completing a previous step.

- 1. Hook up all testing equipment, laser power source, tuning source and the TEC controller. Lots of supplies have transient pulse from the supply when first turn-on. We highly recommend to short the supply before opening to the diode.
- 2. Power up the equipment. Ensure that all outputs are disabled.
- 3. Connect all cables to the testing equipment.
- 4. Using ESD protection load the TO to mount or heat sink and clamp it down if possible.
- 5. Connect each testing equipment to the TO, starting with the Laser source, then the Tuning source, and finally the TEC/Thermistor controller.
- 6. If properly connected, the TEC controller should have a readout of the TEC's current temperature, which should be at the room temperature.
- 7. If TEC's required parameters are properly set and the controller is showing a room temperature readout, then set the controller to 25°C and turn it on.
- 8. For TO-can devices use collimating lenses in front of the fiber or bring the fiber very close to the output of the TO can and optimize the x-y-z axis to avoid excitations of the side peaks. Connect the collimator fiber output to an isolator and connect to a power meter or an optical spectrum analyzer or both using a fiber splitter
- 9. Once the TEC Controller shows the TO is stable at 25°C, it's ok to apply a 5mA bias current to the laser. At which time the TEC controller will show a jump in the TO temperature, this is normal and allow it to stabilize back to the 25°C set point.
- 10. Check the Laser source meter readouts to verify that,
 - a. the voltage is within the expected range as noted on the Data Sheet
 - b. the output power is at the expected power level for 5mA @25°C
 - c. if there is a spectrometer connected, turn it on to see the wavelength of the TO at these set conditions
- 11. Double check the TEC controller is still holding the temperature at the set point.

- 12. Finally, turn on the tuning circuit source meter, starting at 0V, then slowly increase the voltage to max 6V to verify the device is properly connected and tuning.
- 13. Double check the TEC controller is still holding the temperature at the setpoint.
- 14. Now, apply various tuning voltages, not to exceed the limits found on the data sheet, to test out the changes in wavelength to get a good understanding of what the TO will tune to, (keeping a 100 μA compliance)
- 15. Now you have completed the initial setup sequence and the testing system and TO are ready for standard testing procedures as you need.
- 16. If one or more of these steps fail and several attempts to start over from the beginning continue to result in failure of a working and tunable laser or controlled temperature, then notify you BW10 contact for further support.

5. Optical spectrum as a function of voltage tuning

Once the devices are property setup you should be able to measure the optical output signal with a standard optical power meter operating around the lasing frequency of 10x0 nm. By applying a voltage of up to 25V you can see the wavelength sweeping on an optical spectrum analyzer. Figure 2 shows the typical characteristics of a typical device. Please note that the start and stop wavelength differs from device to device.

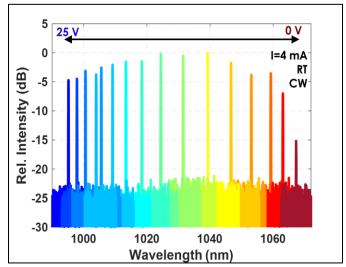


Figure 2: Optical Spectrum as a function of Tuning Voltage

6. TEC Parameters and Response

Typical Performance under Controlled Conditions									
	ΔTmax (K)	Qmax (W)	Imax (A)	Umax (V)					
@ 27C	0.71	0.30	0.55	1.0					
@ 75C	0.89	0.40	0.55	1.3					

Typical Gain PID Settings

P = 0.005

I = 0.0001

D = 0.01

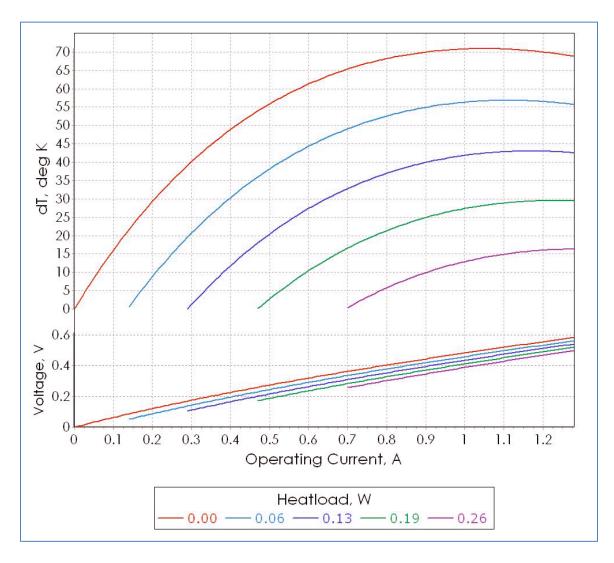


Figure 3 Typical TEC Performance under Lab Controlled Conditions, 10^-5
TORR Vacuum

7. Thermistor Performance Table

The thermistor is a standard $10k\Omega$ thermistor. A table showing thermistor resistance over thermistor resistance at 25° C is shown below.

				_						
°C	Rt/R25	°C	Rt/R25		°C	Rt/R25	ပ္	Rt/R25V	ပ္	Rt/R25
-50	67.0115	-9	5.24025		32	0.74025	73	0.15816	114	0.045755
-49	62.4122	-8	4.96529		33	0.70983	74	0.15295	115	0.044531
-48	58.1579	-7	4.70621		34	0.68082	75	0.14793	116	0.043345
-47	54.2210	-6	4.46231		35	0.65314	76	0.14311	117	0.042196
-46	50.5749	-5	4.23247		36	0.62675	77	0.13846	118	0.041083
-45	47.1985	-4	4.01573		37	0.60157	78	0.13399	119	0.040004
-44	44.0682	-3	3.81144		38	0.57752	79	0.12969	120	0.038958
-43	41.1655	-2	3.61858		39	0.55456	80	0.12554	121	0.037945
-42	38.4725	-1	3.43675		40	0.53266	81	0.12155	122	0.036962
-41	35.9716	0	3.26505		41	0.51172	82	0.11771	123	0.036009
-40	33.6499	1	3.10302		42	0.49172	83	0.11400	124	0.035086
-39	31.4920	2	2.94995		43	0.47262	84	0.11044	125	0.034190
-38	29.4867	3	2.80530		44	0.45435	85	0.10700	126	0.033321
-37	27.6208	4	2.66858		45	0.43689	86	0.10368	127	0.032478
-36	25.8853	5	2.53931		46	0.42019	87	0.100484	128	0.031660
-35	24.2694	6	2.41710		47	0.40422	88	0.097402	129	0.030867
-34	22.7642	7	2.30140		48	0.38893	89	0.094430	130	0.030096
-33	21.3619	8	2.19191		49	0.37431	90	0.091563	131	0.029349
-32	20.0546	9	2.08829		50	0.36031	91	0.088797	132	0.028623
-31	18.8354	10	1.99013		51	0.34687	92	0.086127	133	0.027919
-30	17.6977	11	1.89719		52	0.33401	93	0.083552	134	0.027234
-29	16.6360	12	1.80903		53	0.32168	94	0.081064	135	0.026570
-28	15.6440	13	1.72553		54	0.30988	95	0.078666	136	0.025925
-27	14.7176	14	1.64633		55	0.29857	96	0.076348	137	0.025299
-26	13.8515	15	1.57121		56	0.28773	97	0.074109	138	0.024690
-25	13.0418	16	1.49991		57	0.27735	98	0.071948	139	0.024099
-24	12.2842	17	1.43235		58	0.26739	99	0.069860	140	0.023524
-23	11.5754	18	1.36814		59	0.25784	100	0.067842	141	0.022966
-22	10.9116	19	1.30718		60	0.24869	101	0.065901	142	0.022423
-21	10.2899	20	1.24927		61	0.23990	102	0.064023	143	0.021895
-20	9.70741	21	1.19424		62	0.23147	103	0.062208	144	0.021383
-19	9.16150	22	1.14195		63	0.22338	104	0.060453	145	0.020884
-18	8.64951	23	1.09223		64	0.21562	105	0.058757	146	0.020399
-17	8.16902	24	1.04497		65	0.20816	106	0.057117	147	0.019928
-16	7.71837	25	1.00000		66	0.20101	107	0.055527	148	0.019470
-15	7.29500	26	0.95721		67	0.19413	108	0.053991	149	0.019024
-14	6.89749	27	0.91649		68	0.18753	109	0.052505	150	0.018590
-13	6.52404	28	0.87774		69	0.18118	110	0.051066		
-12	6.17302	29	0.84083		70	0.17508	111	0.049673		
-11	5.84286	30	0.80567		71	0.16922	112	0.048325		
-10	5.53247	31	0.77217		72	0.16358	113	0.047019		

Figure 4: Thermistor table Bandwidth10 LTD.